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Abstract

Approximate determination of electron localization function (ELF) from electron density and its first and second
derivatives is described. It is demonstrated that the second order gradient expansion of the kinetic energy density yields
the modified ELF, which exhibits all the features characterizing electron pairing. Calculations based on the accurate
electron densities derived from X ray diffraction data carried out for crystalline magnesium oxide, chlorine and urea:
they demonstrate that the ELF reveals important peculiarities of crystal architecture. © 2002 Elsevier Science B.V. All

rights reserved.

1. Methodology and results

The purpose of this Letter is to demonstrate
that electron localization function (ELF) intro-
duced by Becke and Edgecombe [1] and exten-
sively studied over the last few years [2 7] can be
approximately derived from the electron density,
e.g., the experimental electron density measured in
the accurate X-ray (or synchrotron) diffraction
experiment [8]. The arguments favouring ELF as a
tool illustrating the bonding theory are as follows
[1]. The spatial localization of electron pairs in
atoms, molecules and crystals is described by the
pair probability of finding an electron in the vi-
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cinity of another (reference) electron with the same
spin and its associated Fermi hole function [9,10].
The latter directly reflects the effect of the Pauli
exchange repulsion of electrons with parallel spins.
The leading term in the Taylor expansion of
spherically averaged conditional parallel-spin pair
probability in a system described by a single-de-
terminant wave function turns out to be propor-
tional to the positive function of electron kinetic
energy density [11]

Dq(r) = ZVQD,(I')V(;)[(I‘)
— (1/4)[Vpo(0)]*/ po ), (1)

where ¢,(r) are the Hartree Fock orbitals, p.(r)
is the density of the c-spin electrons in the system
under consideration (sum runs over the o-spin
orbitals). The smaller is the probability, the
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higher is a localization of the reference electron.
That is why the D, is low in the regions of high
electron pair localization as the core electron
shells and bonding and electron lone pairs in
molecules and crystals. To extract the informa-
tion regarding the spatial electron localization
from the kinetic energy density. Becke and
Edgecombe [1] introduced a dimensionless scalar
ELF

n= [1 + (DG/DG,O)Z]_I- (2)
The term
Doo(r) = (3/5)(6n%)*[p, (r))*? 3)

describes the kinetic energy density of a homo-
geneous electron gas with the spin density locally
equal to p,(r). The values of ELF (2) are re-
stricted to 0 <y <1, value =1 corresponds to
complete electron pair localization, n = 1/2 rep-
resents a homogeneous electron gas-like pair
probability (electron delocalization), and # close
to zero denotes the borders between electron
pairs.

Eq. (3) for the closed-shell systems can be re-
written [2,3]

1

n=[1+e/D0)’] 4)
Here
Dp = 1(r) = (1/8)|Vp(r)[*/p(r) (5)

is so-called Pauli kinetic energy [12,13] (p(r) is the
total electron density) and

1(r) = (1/2) Z Vo,(r)Vo,(r) (6)

is the kinetic energy density (the summation is
performed over all the occupied orbitals) and

Dy(r) = (3/10)(3%°)*[p(r)] " (7)

is the kinetic energy density of a homogeneous
electron gas with the density locally equal to the
total electron density p(r).

To avoid the necessity to calculate ELF from
one-electron wave functions, let us replace (6) by
the second-order gradient expansion of the kinetic
energy density [14]

torr(r) = (3/10)(37) " [p(r)]*"*
+ (1/72)|Vp(0)[*/p(r) + (1/6)V?p(r).
(8)
The latter (Kirzhnits) approximation used in the
density functional theory (DFT) [15] is suitable for
the case of the smooth (but not necessary small)

variation of the electron density. It allows re-
writing the Eq. (5) as

Dyprr = (3/10)(312)*[p(r)]
— (1/9)IVp(x)]*/p(r) + (1/6)V2p(r).
)

Thus, the expression for ELF takes the form

—1

noer = |1+ (Deprr/Do)’| (10)

i.e. yppr turns out to be dependent only on the
electron density and its derivatives.

The asymptotic behaviour of the functions D
and D, with r — R; [11] indicates that exact ELF
(2) goes to 1 in the vicinity of the nuclei at R;,
while the approximate ELF (10) approaches to
zero in these regions due to a discontinuity of the
Laplacian term in (9) at r = R;. Additionally, the
approximate function Dpppr becomes negative
near the nuclei. Therefore, the regions around the
nuclei should be omitted. It is worth noting that
the accuracy of determination of both experi-
mental and theoretical electron densities close to
the nuclei is not accurate due to a variety of
factors [8]. Long-range behaviour of the ratios
Ds /Do and Dpprr/Dy provides the vanishing of
the ELF (2) and (10) in finite systems when
r — oo; it is in agreement with an asymptotic
behaviour of the electron density itself [16]. We
did not observe the deviations from such behav-
iour as it was noted for atoms in [2].

Comparison of the ELF functions for Ne atom
calculated with help of the expressions (2) and (10)
is given in Fig. 1 (wave functions were computed
by non-empirical Hartree Fock method in the 6-
31G basis set). Fig. 1 demonstrates that ELF in the
DFT approximation (10) reveals the electronic
shell structure of the Ne atom. The minima of
and #nppr denoting the K-shell radius [6] are in
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Fig. 1. Electron localization functions for Ne atom: » calcu
lated by expression (2) is depicted by dashed line, while nppr
calculated by expression (10) is shown by the solid lines. Non
empirical Hartree Fock wave functions computed with 6 31G
basis set have been used in calculations.

excellent agreement: though the shape of the ap-
proximate ELF #ppp differs somewhat from # in
the valence region, all the main features seems to
be reproducible. Calculations carried out for other
atoms yielded a similar result [17]. These calcula-
tions have also shown that approximate ELF #ppr
possesses the same specific feature as initial 5 (2)
[2]: nppr has a value close to 1 over the atomic
basin of H and He atoms excluding the nearest
vicinity of the nuclei.

Thus, the approximate ELF determined from
the electron density possesses all the features
characterizing the electron pairing. Let us now
discuss the specificity of the ELF determination
from the experimental electron density. Modern
single-crystal X-ray and synchrotron diffraction
methods allow measuring the diffracted intensities
with accuracy of about 1% [8]. After correcting
the measured intensities for multiple scattering,
thermal diffuse scattering, absorption and ex-
tinction, the electron density of a crystal can be
reconstructed by the fit of the multipole structural
model to the structure factors [8]. Model quasi-
static electron density only slightly suffers from
random and model errors as limited resolution
and incomplete thermal deconvolution and, al-
though it is not derived from the variational
principle and does not obeys the local virial the-

orem, it is close to the quantum mechanical
electron density. The model electron density
provides also the kinetic energy density, as ap-
proximated by (8), which is in very reasonable
agreement with their Hartree Fock analogue for
the molecules and crystals with different types of
the chemical bond [18]. Therefore we tested the
possibility of the use of the ELF #ppr determined
using the experimental model electron density, to
reveal the regions of the electron pair localization
in crystals. Corresponding maps of the ELF #pgr
for crystalline MgQO, chlorine and urea are pre-
sented in Figs. 2 4.

Gradient expansion (8) used in this work to
approximate the kinetic energy density #(r) is not
the only one available: the other approximations
have also been suggested [15]. However, the We-
izsacker approximation

tw(r) = (3/10)(37°) " [p ()
+ (1/8)[Vp(r)*/p(r)

[19] yields n =1/2 everywhere in space, while
Yang approximation [20]

ty(r) = (3/10) 37 [p(r)]*
+(1/72)|Vp(1)[*/p(r) + (1/12)V2p(r),

as we have found, gives worse description of the
atomic cores. It is well known that no DFT ap-
proximation for ¢(r), which is capable of provid-
ing a good description over the entire range of
values of r [11,15]. That is a consequence of rapid
variation of the electron density in the vicinity of
the nuclei and its slow variation in the valence
electron shells. Kirzhnits approximation (8) pro-
vides a compromise solution giving an acceptable
local behaviour of the approximate ELF over all
the position space excluding small areas sur-
rounding the nuclei. At the same time, the case of
urea (Fig. 4) reveals the shortcoming of the ap-
proximate ELF: it has the double peak along the
covalent bonds, while accurate Hartree Fock
wave function-based ELF does not. This artifact
is a consequence of the deficiency of gradient
expansion of the kinetic energy density (6).

Note that there is another approach to deter-
mine the ELF beyond the orbital approximation
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Fig. 2. Electron localization function npgr in the (100) plane of MgO. Solid lines correspond to values nppr = 0.5 (line interval is
0.05), while broken lines correspond to values nppp < 0.5 (line interval is 0.10). Envelope surface of nppp = 0.86 around the O ion is

also shown.

e

Fig. 3. Electron localization function #ppr in the plane (00 1) of
crystalline Cl, (parameters of the multipole model of electron
density are taken from [29]). Only lines correspond to values
prr = 0.5 are shown with the line interval of 0.05. Thick lines
connect atoms within Cl, molecules, while the arrows indicate
the ‘key and lock’ intermolecular interactions.

[21]. It is based on the virial theorem-relationships
derived in the DFT and allows expressing ELF in
terms of the exchange energy density, electron
density, its Laplacian and gradient of the electro-
static potential. Unfortunately, in this approach
Dp (5) depends on the position of origin of the
coordinate system making the ELF study for
molecules and crystals more difficult.

2. Discussion

Consideration of Laplacian of the electron
density [10] is often used to reveal the charge
density concentrations empirically associated with
the number and spatial arrangement of the local-
ized electron pairs assumed in the VSEPR model
[22]. More strictly, the spatial distribution of
electron pairs is described by a six-dimensional
pair probability function [9]. The Pauli principle
leads to the partition of the space of a many-
electron system into the regions occupied by the
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Fig. 4. Mutual molecular arrangement (a) and electron localization function npey in the plane (1 10) of crystalline urea (b); multipole
parameters describing the electron density are taken from [33]. Solid lines correspond to values #ppp = 0.5 (interval is 0.05), dashed
lines are specified in the map. Solid arrows show the hydrogen bonds, while the dashed arrows indicate the secondary intermolecular
interactions of the ‘key and lock’ type. The negative areas around the hydrogen positions are not shown.

pairs of electrons with opposite spins [23 26]. Be-
ing a measure of the excess of the local kinetic
energy due to Pauli’s repulsion, ELF allows map-
ping the implicit features of such a partitioning
onto a position space. Moreover, the topological
analysis of n(r) [4,5] exhibits the existence of the
bonding, non-bonding and core attractors (local
maxima in the ELF) surrounded by their corre-
sponding space domains. The number and spatial
arrangement of these attractors provides a basis
for classification of the chemical bonds [4,5,7],
while quantitative characteristics of the domains
describe specific features of these bonds [27,28].
Consider now the examples of ELF (10) deter-
mined from the experimental electron density.
Crystalline MgO is usually considered as an

example of an ionic chemical bond characterized by
the electron density shift from the cation to anion.
Fig. 2 reveals significant electron localization
around the bonded ions, the electron concentration
around oxygen being larger in size. The valence
electron shell of each anion is non-spherical and has
six well-defined attractors (jppr = 0.86) aligned
with the [1 1 1] and symmetry equivalent directions.
This is in good agreement with the ELF pattern of
NaCl obtained by LMTO calculation [7].

The crystal structure of Cl, (space group Cmca)
is layered with all the atoms in the planes parallel
to (100). Each CI atom is linked by the bond
paths, lines of maximum electron density, to three
atoms belonging to the neighbour molecules in the
same layer, two intermolecular contacts have
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lengths of 3.28 A, which are significantly less than
doubled van der Waals radius of 1.8 A. Fig. 3
reveals that electron pairs in Cl, are concentrated
in the atomic basins. It is remarkable that a lone-
pair of each Cl atom faces an ELF hole of another
atom in the same layer. Each atom is involved in
two interactions of this kind: as a Lewis base
in one case and as a Lewis acid in the another. In
terms of the topological analysis [4,5], we can say
that a non-bonding ring attractor of one CI atom
interacts with an axial (3,+1) critical points of
another. These two-dimensional directional ‘key-
and-lock’ interactions in the (100) plane of solid
chlorine provide a specific mutual arrangement of
molecular units Cl, with the short nearest-neigh-
bour inter-molecular contacts minimizing the en-
ergy of molecular interactions in a crystal.

This agrees very well with the result of the
analysis of the Laplacian of the electron density
[30]. The latter analysis also reveals the directional
interactions resulting from the alignment of non-
bonded electron density concentrations on one of
Cl atoms with the electron density depletions on
another. This observation reflects a similarity be-
tween imaging the electron localization via the
ELF and Laplacian fields, as stressed in [5]. The
homeomorphism of these two fields was also re-
ported in recent study of three-dimensional direc-
tional S---N interactions taking place between
S4N4 molecules in a crystal [31].

The case of urea CO(NH,), (space group
P42,m, Z = 2(2 mm)) is another example of ELF
helping to understand the spatial organization of a
crystal. The structure of urea consists of ribbons of
doubly hydrogen-bonded molecules arranged in a
head-to-tail fashion along the ¢ axis. The plane of
each ribbon is perpendicular to the adjacent rib-
bons oppositely directed along the ¢ axis, the ox-
ygen atom of a carbonyl group in one ribbon is
also involved in H-bonds with two adjusted rib-
bons (Fig. 4a). Intra-ribbon distance O---H
measured by the low-temperature neutron dif-
fraction is 2.071(2) A, while inter-ribbon O---H
distance is 2.014(2) A [32], the longer H-bond be-
ing characterized by the lower electron density
value at the bond critical point [33]. The ELF
pattern presented in Fig. 4b exhibits the details of
H-bonding in urea. Oxygen atom has four

non-bonding ELF attractors: two of them
(n = 0.83) lay in the plane of a molecule, while the
other two (1 = 0.79) belong to the perpendicular
plane. All these attractors point towards the ELF
holes in the electron shell of the hydrogen atoms
behind the nuclei (these holes do not exist in a
single molecule). That forms the basis of the three-
dimensional H-bonding system in urea, which has
a directional key-and-lock character in agreement
with the pattern of intermolecular interaction lines
in the electron density.

Fig. 4b reveals also an interesting feature of in-
termolecular interaction in urea: ELF indicates the
presence of two non-bonding charge concentra-
tions in the valence shells of the C atoms (5 = 0.81),
which also point towards the ELF holes behind the
H nuclei in molecules belonging to the two adjacent
ribbons. Such an arrangement should result in some
secondary attractive interaction between the cor-
responding molecules, and may be responsible for
the mentioned difference between the lengths of the
hydrogen bonds. Since there is no corresponding
interaction line in the electron density, this inter-
action is likely to have an electrostatic nature.

3. Conclusion

Suggested modification of the ELF based on the
density functional approach significantly expands
the framework of the accurate X-ray diffraction
analysis. It is now possible to establish the archi-
tecture features of whole crystal connected with
the electron pair localization (e.g., the nature of
the molecular recognition in the solid state). Being
combined with standard topological analysis, this
approach allows to get the detailed picture of the
electron interactions in a crystal compatible with a
quantum mechanical description.

All calculations in this work were done with the
program WinXPRO [34].
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