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Abstract New satellite missions (e.g., the European Space Agency’s Sentinel-1 constellation), advances in
data downlinking, and rapid product generation now provide us with the ability to access space-geodetic
data within hours of their acquisition. To truly take advantage of this opportunity, we need to be able to
interpret geodetic data in a prompt and robust manner. Here we present a Bayesian approach for the
inversion of multiple geodetic data sets that allows a rapid characterization of posterior probability density
functions (PDFs) of source model parameters. The inversion algorithm efficiently samples posterior PDFs
through a Markov chain Monte Carlo method, incorporating the Metropolis-Hastings algorithm, with
automatic step size selection. We apply our approach to synthetic geodetic data simulating deformation of
magmatic origin and demonstrate its ability to retrieve known source parameters. We also apply the
inversion algorithm to interferometric synthetic aperture radar data measuring co-seismic displacements for a
thrust-faulting earthquake (2015 Mw 6.4 Pishan earthquake, China) and retrieve optimal source parameters
and associated uncertainties. Given its robustness and rapidity in estimating deformation source parameters
and uncertainties, our Bayesian framework is capable of taking advantage of real-time geodetic
measurements. Thus, our approach can be applied to geodetic data to study magmatic, tectonic, and other
geophysical processes, especially in rapid-response operational settings (e.g., volcano observatories). Our
algorithm is fully implemented in a MATLAB®-based software package (Geodetic Bayesian Inversion
Software) that we make freely available to the scientific community.

1. Introduction

Geodetic observational data, most commonly global navigation satellite system (GNSS) and interferometric
synthetic aperture radar (InSAR) measurements, are regularly used to infer information about sources of sur-
face displacements and to understand the underlying processes. With these aims, inverse problem theory has
been applied to geodetic data to study magmatic systems (Pinel et al., 2014, and references therein), the
earthquake cycle (Elliott et al., 2016, and references therein), and many other geophysical phenomena that
cause deformation of the Earth’s interior and surface such as the response to ice load changes, changes in
aquifer storage, and geothermal exploitation (e.g., Auriac et al., 2014; Juncu et al., 2017; Samsonov et al.,
2014). However, many commonly employed inversion approaches aim at solely determining an optimal
set of source parameters—for example, the weighted least-squares “best-fitting”model—by solving an opti-
mization problem that minimizes the weighted misfit between measured and simulated surface displace-
ments. Among these, the most commonly used methods are simulated annealing (e.g., Cervelli et al., 2001)
and genetic algorithm (e.g., Currenti et al., 2005). These have shown to be successful in solving a variety of
optimization problems to study different geophysical problems (Sambridge & Mosegaard, 2002), and a
detailed analysis of these methodologies, applied to the inversion of InSAR data, is presented by Shirzaei
and Walter (2009). Direct-search methods (e.g., simulated annealing and genetic algorithm) do not fully
and appropriately characterize uncertainties associated with the source parameter estimates, with the risk
that results can be inadequately interpreted. In fact, it is common that a wide range of model parameter
values can adequately explain the observations, and it is therefore fundamental to know the credible interval
of such values, especially if interpretations are used for the assessment andmitigation of natural hazards or in
operational settings (e.g., volcano observatories).

The application of a Bayesian approach when inverting geodetic data (e.g., Anderson & Segall, 2013; Fukuda
& Johnson, 2010; Hooper et al., 2013; Jolivet et al., 2015; Minson et al., 2013) allows the characterization of
posterior probability density functions (PDFs) of source parameters, which are formulated by taking into
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account uncertainties in the data (e.g., data errors and incompleteness) and any available prior information
(in the form of a prior PDF). The Bayesian method provides the means to investigate a wealth of statistical
inferences, such as point estimates (e.g., mean and median of posterior distributions), credible intervals
(e.g., quantiles), and direct probability statements about parameters (e.g., the probability that a certain
parameter is greater than a certain value). It also allows analyses of joint and conditional probabilities of
pairs or sets of parameters and is particularly instructive in the case of non-Gaussian multimodal posterior
PDFs. An optimal set of source parameters can also be extracted from the posterior PDF by finding the
maximum a posteriori probability solution.

In this work we propose an approach, summarized in Figure 1, for inverting geodetic data—in particular
those derived from InSAR measurements—using a Bayesian probabilistic inversion algorithm capable of
including multiple independent data sets (e.g., González et al., 2015; Hooper et al., 2013; Sigmundsson
et al., 2014). To efficiently sample the posterior PDFs, we implement a Markov chain Monte Carlo method
(MCMC), incorporating the Metropolis-Hastings algorithm (e.g., Hastings, 1970; Mosegaard & Tarantola,
1995), with automatic step size selection. We then review and discuss existing methodologies to characterize
errors in InSAR data and to subsample large data sets, which are both necessary steps to be performed prior
to an inversion. The proposed method is applied to the inversion of synthetic InSAR and GNSS data to
demonstrate the ability of the algorithm to retrieve known source parameters. Finally, as a test case, we invert
InSAR data spanning the 2015 Mw 6.4 Pishan (China) earthquake and determine the fault model parameters
for this blind thrusting event and validate our results through the comparison with other independent stu-
dies (e.g., Ainscoe et al., 2017; He et al., 2016; Wen et al., 2016).

The proposed approach has been implemented in a software package (Geodetic Bayesian Inversion Software
[GBIS], http://comet.nerc.ac.uk/gbis) that we make freely available to the scientific community. The software
is written in MATLAB® (which is a commercial software and needs to be installed in order to run GBIS) and
uses, among others, analytical forward models from the dMODELS software package (Battaglia et al., 2013).
Simple mechanical models of crustal deformation that use closed-form analytical solutions for the character-
ization of magmatically or tectonically induced deformation processes (e.g., Lisowski, 2007; Segall, 2010) can

Figure 1. Schematic representation of the proposed Bayesian inversion approach, including the Markov chain Monte Carlo
method-Metropolis-Hastings iterative algorithm. Each step is fully described in the text. b is a random value from a uniform
distribution within the range [0, 1]. Note that for i< 20,000, we perform a sensitivity test (see section 2.2) every Ns iterations
to tune the step size Δmj. GNSS = global navigation satellite system, InSAR = interferometric synthetic aperture radar.
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compute surface displacements at 103–105 observation points in 10�3–101 s on consumer-grade computers.
These models can be used to place constraints on source location, geometry, orientation, and strength (e.g.,
volume changes in a magma reservoir and slip on a fault), and their rapidity in computing surface displace-
ments makes them suitable for exploring large numbers (e.g., 106) of model parameter combinations.
Numerical forward models (e.g., boundary elements method) can also be used to explore more complex
source geometries or to take into account complexities in the Earth’s crust (e.g., nonflat topographic surface;
e.g., Bathke et al., 2015; Cayol & Cornet, 1997; Hooper et al., 2011). However, the increase in complexity in the
forward model significantly increases the computational burden, making numerical models less efficient in
operational or rapid-response investigations.

Finally, with this work we aim at proposing a detailed guideline for the use of geodetic measurements in
inverse problems and present a potential standardized procedure that would allow appropriate comparisons
of results obtained by different entities. Inversion results are often used to populate global data sets of defor-
mation source models (e.g., Biggs & Pritchard, 2017; Ebmeier et al., 2018) and should therefore be of compar-
able quality and obtained with a congruent approach.

2. Bayesian Inversion

For a given discrete inverse problem, the data vector d = {d1, d2,…, dND} is equal to a nonlinear model func-
tion, G, of the model parameters m = {m1, m2, …, mNM}, plus error ϵ:

d ¼ G mð Þ þ ϵ (1)

In a Bayesian framework, the posterior PDF, p (m|d), describes the probability associated with a given set of
model parametersm that is based on how well such parameters can explain the data d given their uncertain-
ties, while considering any prior information. The posterior PDF is calculated as follows:

p mjdð Þ ¼ p djmð Þ p mð Þ
p dð Þ (2)

where p(d|m) is the likelihood function ofm given d based on residuals between the data and the model pre-
diction of the observations, p(m) expresses the prior information (in the form of a prior joint PDF) of the
model parameters, and the denominator is a normalizing constant independent of m.

When the errors are multivariate Gaussian with zero mean and covariance matrix Σd, ϵ ~ N(0, Σd), the likeli-
hood function is calculated as follows:

p djmð Þ ¼ 2πð Þ�N=2 Σdj j�1
2� exp � 1

2
d� Gmð ÞT Σ�1

d d� Gmð Þ
� �

(3)

where N is the total number of data points andΣ�1
d is the inverse of the variance-covariance matrix for a given

set of data. The data vector d can be formed from multiple data sets (e.g., multiple SAR interferograms or a
combination of interferograms and GNSS data). The likelihood function for multiple data sets, assuming inde-
pendence, can therefore be expressed as the product of the likelihoods of the data sets (e.g., Fukuda &
Johnson, 2008):

p djmð Þ ¼ ∏K
k¼1 2πð Þ�Nk=2 Σkj j�1

2� exp � 1
2
rTk Σ

�1
k rk

� �
(4)

where Nk is the number of data points and rk are the residual vectors (difference between observed andmod-
eled data, rk = dk � Gkm) associated with each kth data set and K is the total number of data sets. Similarly,
the prior probability of the model vector, assuming independence for the model parameters, is the product
of the prior probabilities of the different model parameters mj:

p mð Þ ¼ ∏NM
j¼1p mj

� �
(5)

where NM is the total number of model parameters.
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Therefore, the Bayesian inversion approach may be preferable in rapid-response or operational settings (e.g.,
volcano observatories) and in all those cases where fast and robust estimates of source parameters may be
needed. If prior probabilities on model parameters are also available, then the Bayesian approach is the only
one capable of including these in the inversion. The rapidity of the inversion approach in estimating source
parameters, especially in the case of a limited number of GNSS sites (e.g., GNSS data only in the validation
example), can also be of use in the planning and design of geodetic monitoring networks. Through the
use of synthetic data sets, the effect of a given measurement site can be quantified in terms of its contribu-
tion to changes in source parameter uncertainties.

The proposed approach is aimed at the characterization of deformation source parameters through the
inversion of static surface displacements spanning a given time interval. While this is of great value for early
warning and in the rapid response to events of volcanic unrest and earthquakes, it is not optimized for the
study of time-dependent dynamic processes. However, inversion results obtained through our approach
are complementary and valuable in instructing other time-variable data assimilation algorithms (e.g., the
ensemble Kalman Filter approach for volcano monitoring; Bato et al., 2017; Gregg & Pettijohn, 2016; Zhan
& Gregg, 2017). Similarly, the Bayesian approach presented here can instruct or be extended to physical
and dynamic models of geodetic and other geophysical measurements, as successfully demonstrated by
Anderson and Segall (2013) in the study and forecasting of an episode of volcanic unrest.

Our Bayesian inversion framework aims at being applicable to different geophysical processes, in particular
those related to tectonic and magmatic activity, and to both scientific research and natural hazard monitor-
ing. To maintain the flexibility of the algorithm and its ability to efficiently invert different types of geodetic
data for a multiplicity of deformation sources, we must rely on certain assumptions and reduce the level of
complexity of certain steps. For example, a variety of one- and two-dimensional covariance functions could
be applied to characterize errors in InSAR data (e.g., González & Fernández, 2011; Knospe & Jónsson, 2010), or
different subsampling methods could be applied to subsample the data (see Section 3.2). While, at this stage,
such complexities are not implemented in our approach and in the GBIS software, users can optionally adapt
the algorithms to better fit their aims and the desired level of complexity.

7. Conclusions

We have presented a Bayesian approach for the simultaneous inversion of independent geodetic data sets, in
particular those from GNSS and InSAR, which takes into account errors in the data and prior information on
model parameters. The inversion algorithm, which we implemented in the freely available MATLAB®-based
GBIS software, is designed to rapidly estimate optimal model parameters and associated uncertainties
through an efficient sampling of the posterior PDFs. Such sampling is performed using a MCMC method
incorporating the Metropolis-Hastings algorithm and with an automatic step-size selection. We have applied
the inversion method to synthetic GNSS and InSAR data sets and demonstrated its ability to retrieve the true
input model parameters. We have also applied the same approach to InSAR data spanning a thrust earth-
quake and retrieved source parameters for a rectangular fault with uniform slip. Our results are similar to
those of previous studies that estimated uncertainties using the added simulated-noise method, but our
methodology has been shown to be significantly faster in characterizing optimal model parameters and asso-
ciated uncertainties, demonstrating its value in rapid-response and operational settings.
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