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We present a framework for the quantum enhanced estimation of multiple parameters corresponding to
noncommuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all
three components of a magnetic field. We propose a probe state that surpasses the precision of estimating
the three components individually, and we discuss measurements that come close to attaining the quantum
limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the
Heisenberg scaling in the estimation of unitarily generated parameters.
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Introduction.—As the elementary theory of nature,
quantum mechanics sets the fundamental limit to the
precision of parameter estimation. On the flip side, quan-
tum resources enable the estimation of parameters with a
precision surpassing that set by classical physics. This is the
basis of the field of quantum enhanced sensing and
metrology, and has been studied in great depth both
theoretically and experimentally [1–4]. Although most of
these investigations have largely focused on the estimation
of a single phase parameter, some attention has recently
been cast on the quantum enhanced estimation of multiple
parameters simultaneously [5–13], and some early experi-
ments have already been performed [14].
The motivations for studying quantum enhanced multi-

parameter estimation are manifold: First, while single-
phase estimation captures a wide range of scenarios
[15], high-level applications such as microscopy, spectros-
copy, and optical, electromagnetic, or gravitational field
imaging intrinsically involve multiple parameters that
should be estimated simultaneously. Second, while the
quantum enhanced limit for individual phase estimation can
always be attained [16,17], the measurements required to
attain the quantum enhanced limit for multiple parameters
need not necessarily commute. This makes multiparameter
quantum enhanced sensing a very interesting scenario for
studying the limits of quantummeasurements [6,7]. Finally,
multiparameter quantum enhanced sensing provides a
novel paradigm for investigating the information process-
ing capabilities of multipartite or multimode quantum
correlated states and measurements.
In this Letter, we study the problem of estimating a

multidimensional field using a fixed number of particles.
We first show that for a uniform field, the quantum
enhancement to the precision of estimation is provided
entirely by the two-particle reduced density matrix of the
system, and that the attainability of the quantum enhance-
ment is solely determined by the one-body reductions of the
probe state. We apply our methods to the simultaneous
estimation of all the components of a classical magnetic
field in three dimensions, and we show that this can be

about three times better than estimating the components
individually [18–21]. Finally, we present a multipartite
quantum state achieving this advantage, and we show how
realistic measurements perform in attaining the multipara-
meter quantum limit using matrix product state techniques
[22–24].
Framework.—We consider the estimation of parameters

governed by the Hamiltonian ĤðφÞ ¼ P
d
k¼1 φkĤk. The

parameters φk ∈ R, k ¼ 1;…; d, to be estimated are the
coefficients of a set of (not necessarily commuting) gen-
erators Ĥk. We assume that the Ĥk themselves do not
depend on φ. In addition to estimating a field in multiple
dimensions simultaneously in free space, materials, or
biological samples, this problem is equivalent to quantum
enhanced Hamiltonian tomography as it allows us to
estimate unknown coefficients of the Hamiltonian in a
suitable operator decomposition [25]. We note that earlier
works have studied the estimation of parameters corre-
sponding to unitary channels from information geometry
[26–28] and representation theory [29,30] perspectives;
their estimations have shown a Heisenberg scaling.
A pureN-particle probe state jψi acquires the parameters

via the unitary transformation ÛðφÞ ¼ e−iĤðφÞ, and we
seek the best quantum strategy for the estimation of the
parameters from the evolved probe state jψφi ¼ ÛðφÞjψi.
The performance of an estimator of φ is quantified in terms
of the covariance matrix Cov½φ�. The quantum Cramér-Rao
bound [16,17] is a lower bound to the covariance matrix in
terms of the quantum Fisher information matrix (QFIM),
thus yielding an ultimate limit on the best possible
precision of any (unbiased) estimator. For every specific
set of positive operator valued measurements (POVMs)
fΠ̂ig, one finds [17]

MCov½φ� ≥ F ðφ; fΠ̂igÞ−1 ≥ IðφÞ−1; ð1Þ
where the first inequality is the classical and the second
inequality the quantum Cramér-Rao bound, respectively.
Here, M is the number of times the overall experiment
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is repeated, F k;lðφ; fΠ̂igÞ ¼ P
n∂φk

pðnjφÞ∂φl
pðnjφÞ=

pðnjφÞ, and k; l ¼ 1;…; d, denotes the Fisher information
matrix (FIM) determined by the probabilities pðnjφÞ ¼
hψφjΠ̂njψφi. Further, Ik;lðφÞ¼Re½hψφjL̂kL̂ljψφi� is the
QFIM, where, for pure probe states, the symmetric loga-
rithmic derivative (SLD) L̂k with respect to the parameter φk

is determined by L̂k ¼ 2½j∂φk
ψφihψφj þ jψφih∂φk

ψφj� for
all k ¼ 1;…; d [17].
While the classical Cramér-Rao bound can always be

saturated by, e.g., a maximum likelihood estimator [31], the
quantum limit [i.e., the second inequality in Eq. (1)] may not
be attainable in general. In a single parameter setting, the
optimal measurements saturating the quantum Cramér-Rao
bound are given by the projectors onto the eigenvectors of
the SLD. In the multiparameter setting, however, the SLDs
may not commute in general; this may lead to tradeoffs for
the precisions of the individual estimators [6,7].
Formalism.—For unitary time evolutions under the

Hamiltonians discussed above, we show in Sec. I of the
Supplemental Material [32] that the QFIM can be expressed
as the correlation matrix of the Hermitian operators
ÂkðφÞ ¼

R
1
0 dαe

iαĤðφÞĤke−iαĤðφÞ [33], leading to (sup-
pressing the parameter φ in the arguments henceforth)

Ik;l ¼ 4Re½hψ jÂkÂljψi − hψ jÂkjψihψ jÂljψi�: ð2Þ

We now restrict ourselves to the situation where the N

particles evolve under the one-particle Hamiltonian ĥ½n� ¼P
d
k¼1 φkĥ

½n�
k for n ¼ 1;…; N (where the ĥ½n�k are bounded),

leading to the global Hamiltonian

ĤðφÞ ¼
XN
n¼1

ĥ½n� ¼
Xd
k¼1

φk

XN
n¼1

ĥ½n�k ≡Xd
k¼1

φkĤk: ð3Þ

With this, we find ÂkðφÞ≡P
N
n¼1 â

½n�
k , where â½n�k ¼R

1
0 dαeiαĥ

½n�ðφÞĥ½n�k e−iαĥ
½n�ðφÞ are Hermitian operators acting

only on particle n.
Now, for estimating a uniform field as given by the

Hamiltonian (3), the phase parameters are identical across
the system (although they correspond to noncommuting
generators). Hence, to simplify the calculation, we restrict
ourselves to permutationally invariant quantum states, i.e.,
states that are invariant under any permutation of its
constituents: jψi ¼ P̂πjψi for all possible π, where P̂π

denotes the unitary operator for the particular permutation
π [34]. Under the restriction of permutationally invariant
states, the QFIM simplifies to (see Sec. II of the
Supplemental Material [32] for a more general derivation
and discussion without the assumption of permutationally
invariant states)

I ¼ 4NI ½1� þ 4NðN − 1ÞI ½2�; ð4Þ

where

I ½1�
k;l ¼ Re½Tr½ϱ̂½1�âkâl�� − Tr½ϱ̂½1�âk�Tr½ϱ̂½1�âl� ð5Þ

only depends on the one-particle reduced density matrix
ϱ̂½1� and

I ½2�
k;l ¼ Tr½ϱ̂½2�âk ⊗ âl� − Tr½ϱ̂½1�âk�Tr½ϱ̂½1�âl� ð6Þ

depends on the two-particle reduced density matrix ϱ̂½2�.
Equation (4) highlights several interesting physical

aspects of quantum-enhanced metrology: First, note that
I ½1� can be bounded independently of ϱ̂½1�. This immedi-
ately shows that the archetypal quadratic scaling of
quantum enhanced sensing arises solely from the two-
particle reduced terms. For instance, let the probe state be
jψi ¼ jϕi⊗N , i.e., permutationally invariant and separable.
Then, ϱ̂½2� ¼ ϱ̂½1� ⊗ ϱ̂½1� such that I ½2� ¼ 0, and the QFIM
only scales linearly in N, i.e., I ¼ NI ½1�. Thus, Eq. (4)
implies that in permutationally invariant systems quantum
correlations are necessary for achieving a quadratic scaling
in the number of probe states N—the so-called Heisenberg
scaling. Note that the latter reasoning also applies to
quantum states that are not permutationally invariant, as
can be seen by the results of Sec. II of the Supplemental
Material [32]. Further, for probe states of the form
jψi ¼ jϕi⊗N , the QFIM satisfies rank½I � ≤ 2ðD − 1Þ,
where D is the dimension of the local Hilbert space
(e.g., D ¼ 2 for two-level systems, see Sec. III of the
Supplemental Material [32] for details) such that if the
number of parameters exceeds 2ðD − 1Þ, i.e.,
d > 2ðD − 1Þ, a simultaneous estimation of all parameters
necessarily fails due to a lack of information for all
parameters in the QFIM. Finally, if both the one- and
two-particle reduced states are maximally mixed, the
Heisenberg scaling is lost. To see this, note that ϱ̂½1� ¼
12=2 (where 1k is the k × k identity matrix) implies
I ½2� ¼ Tr½ϱ̂½2�âk ⊗ âl� − Tr½âk�Tr½âl�=4, which vanishes if
ϱ̂½2� ¼ 14=4. This is an example where too much entangle-
ment harms the quantum advantage of exploiting N
particles in parallel [13,35].
Attaining the quantum limit.—Saturating the quantum

Cramér-Rao bound and attaining the QFIM is the next
important part of quantum enhanced sensing. This is
particularly interesting for multiparameter estimation since
the SLDs corresponding to the different parameters need
not commute. We show in Sec. IV of the Supplemental
Material [32] that for a purely unitary evolution, the QFIM
is saturated if (i) the QFIM is of full rank and (ii) the
expectation value of the commutator of the SLDs
vanishes for all pairs [28], i.e., hψφjL̂kL̂l − L̂lL̂kjψφi≡
8iIm½hψ jÂkÂljψi� ¼ 0. For permutation invariant systems,
this reduces to 8iNIm½Tr½ϱ̂½1�âkâl�� ¼ 0 for all k, l. It is
interesting to note that while the quantum enhanced scaling
is governed entirely by the two-particle reduced density
matrices [see Eq. (4) and Sec. II of the Supplemental
Material [32] ], the attainability of this bound is determined
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solely by the one-particle term (for a general proof, see
Sec. IVof the Supplemental Material [32]). The expectation
value vanishes, for instance, for permutationally invariant
pure probe states jψi with ϱ̂½1� ¼ 12=2. This is a sufficient
but not necessary condition for the expectation of the
commutator to vanish and gives a rather simple mathemati-
cal condition for the quantum Cramér-Rao bound to be
saturated. It is an instance of the local suppression of the
noncommutativity of the generators using quantum corre-
lations [26].
More generally, when the expectation values of all

commutators of the SLDs vanish and the QFIM is of full
rank, the eigenvectors of the d distinct SLDs lie in a
subspace of dimension dþ 1, allowing for the construction
of a POVM that saturates the quantum Cramér-Rao bound.
We prove this assertion in Sec. IV of the Supplemental
Material [32] and, further, provide a procedure for con-
structing such a POVM that saturates the quantum Cramér-
Rao bound. Note that for commuting generators,
hψ jÂkÂljψi ∈ R, such that the quantum Cramér-Rao
bound can always be saturated given the QFIM is not
rank deficient (see also [28]).
Estimating a magnetic field in three dimensions.—We

now apply our formalism to the task of estimating the
components of a magnetic field in three dimensions
simultaneously using two-level systems. Potential
systems could include trapped ions, nitrogen-vacancy
centers, or doped spins in semiconductors [36–40]. The
Hamilton operator for this system is given by ĥ ¼ μ̂ · B ¼P

3
k¼1 μ̂kBk ¼

P
3
k¼1ðμ=2ÞBkσ̂k ≔

P
3
k¼1 φkσ̂k (see Sec. V

of the Supplemental Material [32] for a discussion of
d > 3), where the magnetic moment μ̂k ¼ μσ̂k=2 is propor-
tional to the spin, fσ̂kg denotes the unnormalized Pauli
operators, and φk ¼ μBk=2. To develop the intuition for
estimating the magnetic field in three dimensions simulta-
neously, we start with the estimation of a magnetic field
pointing solely along one of the specific directions X, Y, or
Z. It is well known that a Greenberger-Horne-Zeilinger-
type state (see the Sec. VI of Supplemental Material [32])

jΦki ¼ ðjϕþ
k i⊗N þ jϕ−

k i⊗NÞ=
ffiffiffi
2

p
ð7Þ

achieves the quantum Cramér-Rao bound, where jϕ�
k i is the

eigenvector of the Pauli operator σ̂k corresponding to the
eigenvalue�1 (k ¼ 1, 2, 3 corresponding to the X, Y, and Z
directions). These states are permutationally invariant with

one- and two-particle reduced density matrices ϱ̂½1�k ¼ 12=2

and ϱ̂½2�k ¼ ðjϕþ
k ;ϕ

þ
k ihϕþ

k ;ϕ
þ
k j þ jϕ−

k ;ϕ
−
k ihϕ−

k ;ϕ
−
k jÞ=2 ¼

ð12 ⊗ 12 þ σ̂k ⊗ σ̂kÞ=4, respectively. Now, for the simulta-
neous estimation of all three components, an obvious
candidate is

jψi ¼ N ðeiδ1 jΦ1i þ eiδ2 jΦ2i þ eiδ3 jΦ3iÞ; ð8Þ
where N is the normalization constant and fδkg are
adjustable local phases. Now, for N ¼ 2n, n ∈ N, there

are appropriate δk such that ϱ̂½1� ¼ 12=2; i.e., the quantum
Cramér-Rao bound can be achieved. For N ¼ 4n, this can
even be realized by setting δk ¼ 0 for all k. Moreover, for
N ¼ 8n (and δk ¼ 0 for all k) the two-body reduced density
matrix of jψi is an equal mixture of the GHZ-type states in
all directions and is given by

ϱ̂½2� ¼ 1

3

X3
k¼1

ϱ̂½2�k ¼ 1

4
12 ⊗ 12 þ

1

12

X3
k¼1

σ̂k ⊗ σ̂k: ð9Þ

For any other N, we show in Sec. VII of the Supplemental
Material [32] that the difference from the form of ϱ̂½2� in
Eq. (9) is exponentially small in N. To simplify our
calculations, we henceforth restrict ourselves without loss
of generality to states with Eq. (9) as its two-body reduced
density matrix, but note that this is no limitation of our model
as indicated by the numerical simulations presented below.
Now, for a probe state with marginals ϱ̂½1� ¼ 12=2 and

ϱ̂½2� given above, the QFIM is (see Sec. VIII of the
Supplemental Material [32] and Ref. [27], which shows
the same scaling)

Ik;l¼
4

3
NðNþ2Þ½ð1−sinc2½ξ�Þηkηlþδk;lsinc2½ξ��; ð10Þ

where sinc½ξ� ¼ sin½ξ�=ξ with ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2
1 þ φ2

2 þ φ2
3

p
and

ηk ¼ φk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2
1 þ φ2

2 þ φ2
3

p
for all k. Note that, in the limit

of φk → 0 for k ¼ 1, 2, 3, the QFIM is diagonal, i.e.,
Ik;l ¼ ð4=3ÞNðN þ 2Þδk;l. Since the QFIM in Eq. (10) is
the sum of a rank-one matrix and a rescaled identity, its
eigenvalues can be read off directly as λ1 ¼ 4NðN þ 2Þ=3
and λ2;3 ¼ 4NðN þ 2Þsinc2½ξ�=3. As for ξ ≠ kπ, k ∈ N, the
quantum Cramér-Rao bound can be saturated [41]; the
minimal total variance for estimating the three components
of the magnetic field simultaneously is given by jΔφsim

ent j2 ¼P
3
k¼1 Δφ2

k ¼ Tr½CovðφÞ� ¼ Tr½I−1ðφÞ� [42], leading to

jΔφsim
ent j2 ¼

3þ 6=sinc2½ξ�
4NðN þ 2Þ ; ξ ≠ kπ; k ∈ N: ð11Þ

Let us now compare three different scenarios depicted in
F. 1 for the estimation of φ: (i) A classical strategy of using
only pure product states, (ii) a quantum strategy where the
parameters are estimated individually, and (iii) the simul-
taneous estimation of the parameters with total variance
given by Eq. (11). To obtain a fair comparison among (i)–
(iii), we use exactly N particles to estimate all three cases.
For scenario (i), the strategy is to divide the set of N

particles into three blocks of length n ¼ N=3 and, on the
kth block, to prepare a product state that allows for the
estimation of φk. This is due to the impossibility of
estimating three parameters simultaneously using a pure
and permutationally invariant product state, as shown by
the singularity of the QFIM (Sec. III of the Supplemental
Material [32] shows that its rank is 2). The maximal QFI for
each block (see Sec. VI of the Supplemental Material [32])
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is equal to Ik¼n½λmaxðâkÞ−λminðâkÞ�2, where λmax=minðâkÞ
denotes the maximal or minimal eigenvalue of âk such
that ½λmaxðâkÞ−λminðâkÞ�2¼4½ð1−sinc2½ξ�Þη2kþsinc2½ξ��
for k ¼ 1, 2, 3. Further, Δφ2

k ¼ 1=Ik and, thus, we find
for the individual estimation of all parameters using
separable states

jΔφind
sepj2 ¼

3

4N

X3
k¼1

1=½ð1 − sinc2½ξ�Þη2k þ sinc2½ξ��: ð12Þ

Second, for a quantum strategy exploiting entangled
states where we estimate the parameters individually, we
again divide the chain of N particles into three blocks.
Next, on the kth block, one prepares a GHZ-type state in the
âk basis. Recall that for each block, Ik ¼ n2½λmaxðâkÞ −
λminðâkÞ�2 (see Sec. VI of the Supplemental Material [32])
such that with Δφ2

k ¼ 1=Ik one finds

jΔφind
ent j2 ¼

3

N
jΔφind

sepj2: ð13Þ

Third, for the simultaneous estimation of the parameters,
the total variance is given by Eq. (11). Because for all three
scenarios the QFI depends on the true parameter values, we
expect the advantage of simultaneously estimating the three
parameters to be a function of φ. The inset of Fig. 2 shows a
specific example suggesting that it is possible to design
quantum probes for magnetic field estimation such that
estimating the three components simultaneously may be
superior to estimating them individually. Overall,
jΔφsim

ent j2 ≤ jΔφind
ent j2 ≤ jΔφind

sepj2 for all N ≥ 3 and some
true parameter values φk. In the limit φk → 0, for all
k ¼ 1, 2, 3, with ½λmaxðâkÞ − λminðâkÞ�2 → 4 one finds
jΔφind

sepj2 → 9=4N (see [43] for a similar result in a
slightly different context), jΔφind

ent j2 → 27=4N2, and
jΔφsim

ent j2 → 9=4NðN þ 2Þ. This is illustrated in Fig. 2,
where the results are obtained numerically using matrix
product state techniques [22–24] (see [44] for another
application in quantum metrology) to also account for
system sizes N ≠ 8n. It is important to note that for the
considered states and operators, this representation is exact
and, hence, no approximation is made; see Sec. IX of the
Supplemental Material [32]. Further, in the limit φk → 0we
obtain a threefold improvement when estimating the
parameters simultaneously. Note that this observation is

not proven to be optimal but, in this limit, confirms the
findings of [8] for commuting generators.
Classical Fisher information.—We have already dis-

cussed (see Sec. IVof the Supplemental Material [32]) that
there is a POVM that achieves the multiparameter quantum
Cramér-Rao bound. The so-constructed POVM contains as
one element the projector onto the time-evolved probe
state, i.e., ÛðφÞjψi. While this set theoretically achieves the
bound, it may not be very appealing from an experimental
perspective. Hence, let us finally discuss some realistic
measurements. In particular, we consider two sets of

POVMs: Π̂ð1Þ
k , k ¼ 1;…; 4, contains the three projectors

Π̂ð1Þ
k ¼ jΨkihΨkjwith jΨki ¼ ðjϕþ

k i⊗N þ eiδk jϕ−
k i⊗NÞ=

ffiffiffi
2

p

together with the element guaranteeing normalization,

Π̂ð1Þ
4 ¼ 1 −

P
3
k¼1 Π̂

ð1Þ
k . Note that for even N and appro-

priate δk, these operators indeed form a valid set of POVMs

[45]. Further, Π̂ð2Þ
k;�, k ¼ 1;…; 3, is determined solely by

expectation values of simple Pauli strings, i.e.,

Π̂ð2Þ
k;� ¼ ð1� σ̂⊗N

k Þ=6:

Note that Π̂ð1Þ
k are entangled measurements while Π̂ð2Þ

k;� only
involves local operators. Again, we use matrix product state
techniques to compute the classical Fisher information for
these POVMs, see Fig. 2. Further, allowing for entangled
measurements (for the considered true parameter values
and system sizes) does not improve the scaling of the

FIG. 1. The three considered scenarios as discussed in the main
text.

FIG. 2. Log-log plot for the estimation of the three directions
of a magnetic field with parameters φ1 ¼ 10−3 and
φ2 ¼ φ3 ¼ φ1=10. We show the total variance for the three
different scenarios described in the main text, as well as the result
obtained for the FIM for the two considered POVMs. Note that
for the QFIM results we computed the total variance for all N,
while for the FIM results we made computations only for the
values of N emphasized with a marker. Inset: Total variance for
the three scenarios and fixed N ¼ 120 with respect to the true
parameter value φ1 (where, as before, we set φ2 ¼ φ3 ¼ φ1=10).
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precision, as both POVMs obey a Heisenberg scaling. This
resembles the results presented in [4] for single-parameter
metrology.
Conclusions.—We have obtained the quantum limits for

the simultaneous estimation of parameters corresponding to
noncommuting unitary generators. We applied our methods
to the simultaneous estimation of all three components of a
magnetic field in space. The results suggest that estimating
the phases simultaneously may improve the sensitivity by a
factor of d ¼ 3, in consonance with earlier results with
commuting generators [8]. Future extensions of our results
could include, among others, a combination of commuting
and noncommuting generators, and the inclusion of
decoherence. Another direction could be the search for
optimal probe states and more tractable measurements for
specific physical systems, such as trapped ions or vacancy
centers in diamond.
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